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Abstract
The theory of the premelting phenomena in ionic crystals on the basis of the concept of the
heterophase fluctuation has been applied to the pseudo-binary ionic crystals, KCl–NaCl,
AgBr–AgCl and AgBr–CuBr systems. Molecular dynamics simulations (MD) have been
performed to examine the ionic configurations in their premelting region in the vicinity of their
melting points. Liquid-like clusters have been observed in the results of MD utilizing the
Lindemann instability condition. The sizes of liquid-like clusters have been estimated by theory
and MD. The characteristics of the dynamical behavior of ions in the premelting region have
been examined by the mean square displacement and the velocity correlation functions.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The anomalous temperature dependence of the physical
properties of ionic crystals in the vicinity of melting point
have been widely studied by experiment, such as ionic
conductivity [1], specific heat [2], the thermal expansion
coefficient [3], etc [4]. These premelting phenomena have
been interpreted as the heterophase fluctuation, in other words
the premelting consists of actual melting in the pure crystal
in small regions of space and time near the melting point.
This concept was proposed by Frenkel many years ago [5].
In previous studies, we have investigated the theoretical
background of these anomalous premelting phenomena in
ionic crystals. We have re-examined Frenkel’s theory in
relation to the thermodynamical model and the size of liquid-
like clusters which may be formed in the ionic crystals. We
have also performed molecular dynamics simulations (MD)
in two different types of ionic crystals, namely silver halides,
AgBr and AgCl, and alkali halides, NaCl and KCl, in order to
confirm the theoretical results, especially the estimated size of
liquid-like clusters. The results were in good agreement among
themselves [6].

AgBr and AgCl have a rock salt structure in their solid
phase, which does not exhibit superionic conduction to their
melting temperature. On the other hand, AgI is one of the
typical examples of a superionic conductor in its α phase, i.e. α
AgI, where the diffusion coefficient of the Ag ion is of the
same order as that of liquids. In α AgI, Ag ions move through

the interstitial sites of the body centered cube of I ions [7].
Concerning this point, Andreoni and Tosi [8], and later Nield
et al [9] suggested from the structural study that the disorder
of Ag ions in the rock salt silver halides is observed before
melting, and the feasible transition of AgBr and AgCl into
the superionic phase seems to be prevented by melting. In
our previous research, we have reported that Ag ions in silver
halides in the premelting region show large deviation from their
original lattice sites corresponding to experiment [6].

Meanwhile, we have also examined the pseudo-binary or
ternary ionic crystals, e.g. noble metal halide mixtures and
alkali halide mixtures as serial works. It is of particular interest
to study the change of their physical properties by dissolving
different types of silver halide AgBr or AgCl into AgI, and the
reverse. In our previous works, we have carried out MD in
molten silver halide mixtures to discuss the mixing effect on
the structure and transport properties [10]. It is worth noting
that the ratios of partial conductivities in ternary molten salts
are found to be constant regardless of their temperature [10].
Since these phenomena were first found in binary molten salts
their theoretical background has been investigated [11]. As
an extension, we have also studied the dielectric screening
effect in molten salts and their mixtures, i.e. the effective
potential between cations and anions are significantly altered
by the existence of the surrounding opposite ions [12]. The
dielectric screening effect may affect the dynamical behavior
of ions in molten salts. We have investigated the dynamics
of ions in molten silver halide mixtures and found the ionic
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vibration has pronounced peaks in the ‘terahertz’ region [13].
Furthermore, we have studied the superionic phase of AgBr–
CuBr as an example of a system with two kinds of mobile
cations, Cu+ and Ag+, to examine the distribution difference
between cations [14].

Therefore, it seems as a matter of great importance
to examine the various aspects of mixtures of ionic
crystals. Regarding defect formation in ionic crystals, the
formation free energy of a pair of Schottky-type defects was
shown to be lowered by the appearance of a defect–defect
interaction with increasing temperature using the Debye–
Hückel approximation [15]. In connection with the specific
heat data of ionic crystals, the correction term due to the
defect–defect interaction was shown to be proportional to the
cube root of the Frenkel-type defect concentration [16]. In
recent years, the appearance of defect clusters in crystals has
been analyzed by means of computer simulation using the
Lindemann instability condition [17]. In this study, as a
serial work, we apply the theory of liquid-like clusters in the
premelting region to pseudo-binary ionic crystals, which are
compared to MD results. The dynamical aspects of liquid-like
clusters are also investigated by MD.

2. Defects and liquid-like clusters in ionic crystals

The theory of defect formation and liquid-like clusters in the
premelting region has been developed by the reconstructed
Frenkel theory and the theory of ionic conductivity. In the
following sections, we will summarize the important results
of the theory, obtained in the former articles, for the reader’s
convenience [6].

In this study, we denote this sort of liquid-like local cluster
as the B′-state and the other parts keeping the condition of
ordinal ionic crystal as the A-state. These clusters of B′-state
can be created and annihilated dynamically in time and space,
keeping the thermal equilibrium for A ↔ B′ and indicating
macroscopically as one phase. Hereafter we will call this sort
of cluster the ‘quasi-liquid’, in short the ‘L’ state. One of our
main purposes is to investigate whether its physical properties
are similar to those of bulk liquid or not.

With increasing temperature, the lattice composed of the
mixture of states A and B′ approaches the phase transition to
the liquid state B. This change may be interpreted using the two
steps transition model; transition 1 from the original state A to
the mixture state A and B′, a kind of higher order transition like
the order–disorder case; transition 2 being the usual melting of
the system. It may be possible to define the chemical potential
in the B′ cluster as μB′ . We also denote the chemical potential
of the A-state as μA.

We consider an ionic crystal accompanied by a premelting
dislocation in the vicinity of its melting point. We assume that
the number of positive and negative ions are both equal to N ,
and the number density of the liquid state B and of B′-clusters
are almost the same value n0. The approximation μB′ ∼ μB

has been made. The most ideal shape of a B′-cluster containing
s defect pairs that minimizes the surface energy is supposed
to be a sphere, thus s = n0(4πr 3/3). The surface area of
this sphere is given by 4π(3s/4πn0)

2/3, thus the surface free

energy, α, is 4πσ(3s/4πn0)
2/3, where σ is the surface tension

per unit area. The total chemical potential of this cluster is
given by (sμB + αs2/3). The total Gibbs free energy of the
system G total is described as follows,

G total = NAμA + �s=s0gs(sμB + αs2/3) + Smix(gs, T ) (1)

where NA is the number of ion pairs belonging to the A-
phase, gs the total number of s-pairs clusters, and so the lowest
number of ion pairs. Smix(gs, T ) stands for the mixing entropy,
and its simplified expression is

Smix(gs, T ) = kBT [NA ln{NA/(NA + �gs)}
+ �s gs ln{gs/(NA + �gs)}]. (2)

The total number of ions N is kept constant, thus we have

{NA/(NA + �gs)} = C exp[−βμA] (3)

where β = 1/kBT . We assume the total fraction of clusters to
be much smaller in comparison with N , i.e., �gs � NA ∼ N ,
then we have

gs
∼= N exp[−β{s(μB − μA) + αs2/3}]. (4)

The chemical potentials μA and μB satisfy the following
relation at a temperature T just below the melting point Tm,

μB − μA = {(∂μB/∂T )T m − (∂μA/∂T )T m}(T − Tm)

= −(Lm/NTm)(T − Tm) (5)

where Lm is the latent heat of fusion. Combining the above
equations, we have the following relation

G total = NμA − NkBT
∫ ∞

s0

exp[−β{s(Lm/NTm)(Tm − T )

+ αs2/3}] ds (6)

where we have made the approximation to obtain (6) that the
number of ion pairs s is continuous with its lowest value s0.
It is recognized from (6) that the Gibbs free energy of the
system is lowered by the mixture of (A-state + B′-state) rather
than the homogenized A-state. It means the appearance of the
clusters indicated by B′-state is plausible from the viewpoint
of the thermodynamic condition. Using the Gibbs–Helmholtz
equation, the enthalpy change, �H , corresponding to the
second term on the right-hand side of equation (6) is equal to

�H = Lm

∫ ∞

s0

s exp[−β{s(Lm/NTm)(Tm − T ) + αs2/3}] ds.

(7)
The defects’ fraction has been obtained in some ionic

crystals by the anomalous temperature dependencies of
specific heats accompanied by the Frenkel-type defect [8].
Applying the Maxwell relation to (7), we have the specific heat
of the mixture system of A and B′ at the melting point, Cp(Tm),
as follows

Cp(Tm) = CA
p (Tm) + (3/2)(L2

m/NkBT 2
m)

×
[
(1/βα)s7/3

0 exp{−βαs2/3
0 } + (17/6βα)

×
∫ ∞

s0

s4/3 exp{−βαs2/3} ds

]
(8)
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where CA
p (Tm) is the normal specific heat in the case that

A-state only exists at the melting temperature Tm. There is
a phenomenological but important relation, i.e. χT α ∼ L,
where L is a constant with the dimension of length [5, 18].
χT is the isothermal compressibility of the quasi-liquid B′-
state, however, we use the value in molten phase at melting
temperature. The value of L is about 0.35 A for most of
the molten salts. Using this relation, we obtain βα ∼ 1/7.
The normal specific heat of A-state, CA

p (T ), where only some
defects distribute randomly, may be expressed by a linear
temperature dependence. If we assume that the distribution
of the cluster sizes is rather sharp around the value of ŝ, and
close to the lowest one s0, then we have the following form as
an approximation of (8),

Cp(Tm) ∼ CA
p (Tm) + (3/2)(L2

m/NkBT 2
m)

× [(1/βα)ŝ7/3 exp{−βαŝ2/3}]. (9)

Then the specific heat at the temperature T in the vicinity
of the melting point, Cp(T ) is expressed as follows,

Cp(T ) ∼ CA
p (Tm) + �Cp(Tm) exp[Lmŝ/NkBTm]

× exp[−Lmŝ/NkBT ] (10)

where

�Cp(Tm) = (3/2)(L2
m/NkBT 2

m)[(1/βα)ŝ7/3 exp{−βαŝ2/3}].
(11)

The normal specific heat of the crystal A-state usually
includes the defects’ formation energy, the anharmonic term
in the lattice vibration, and the contribution from the classical
Dulong–Petit value. The former two terms have linear but
gentle temperature dependence. The anomalous specific heat
in the vicinity of the melting point is caused by the second
term on the right-hand side of (10). The size of clusters, ŝ,
can be estimated by applying the above theory to ionic crystals
using the experimental specific heat data and all other available
experimental data. In section 3, we will show the alternative
method to obtain the cluster size ŝ from the conductivity data.

3. Conductivity of A-state and B′-clusters

Now we consider B′-state clusters with conductivity σB′ and
A-state clusters with conductivity σA in an ionic crystal. Our
purpose is to show how the observed conductivity at the
melting temperature Tm, i.e. σobs(Tm), can be represented.
From the consideration of the dielectric constant of the
spherical B′-clusters with radius r , we have the expression

E ′ = {3εA/(εB′ + 2εA)}E0 (12)

where E0 and E ′ are the external electrical field and that
of inside of the B′-cluster, respectively; εA, and εB′ are the
dielectric constants of A-state and B′-state, respectively. Then
we can obtain the following expression,

E ′ = {3σA/(σB′ + 2σA)}E0. (13)

The electric current density in the B′-cluster is expressed
as σB′ {3σA/(σB′ + 2σA)}E0. This fact suggests that the electric
conductivity of the system at melting temperature, σobs(Tm),

has been altered by the existence of the B′-clusters. Hereafter,
we simply write σobs(Tm) as σm. Using (4), the fraction of
ionic pairs in the ‘L’ clusters to the number of total ions, xB′ , is
written as follows,

xB′ = ŝgs/N = ŝ exp[−β{s(μB − μA) + αs2/3}] (14)

then σm is expressed as

σm = (1 − xB′)σA + xB′ {3σAσB′/(σB′ + 2σA)} (15)

= [1 − ŝ exp{−β(αŝ2/3)}]σA + ŝ exp{−β(αŝ2/3)}
× {3σAσB′/(σB′ + 2σA)}. (16)

The large deviation of the electric conductivities from
linearity in the high temperature region in ionic crystals is
experimentally observed. If we use the observed value of the
crystal at Tm as σm, the extrapolated value at Tm as σA, and the
value in molten phase at Tm as σB′ , and put them into (16), then
we can obtain the number of ion pairs in the B′-clusters, ŝ.

We can obtain a different expression for the ionic
conductivity by a different model. The effective medium
approximation (EMA) is applied to the macroscopic random
mixing state [19]. As discussed above, we assume that the
system is random mixture of two different states, the A-state
and B′-state, with dielectric constants εA and εB′ , respectively.
We consider the case that there is a sphere of A-state in the
effective medium with electric constant εm. The magnitude
of the polarization per unit volume in the A-state sphere, PA,
induced by the external electric field E0, is represented as

PA = {3εm(εA − εm)/(εA + εm)}E0. (17)

Similarly, we have

PB′ = {3εm(εB′ − εm)/(εB′ + εm)}E0 (18)

where PB′ is the magnitude of the polarization per unit volume
in the B′-state sphere in the effective medium induced by the
external electric field E0. EMA demands the conditions,

xA PA + xB′ PB′ = 0 (19)

where xA + xB′ = 1. Therefore, we have

xA{(εA − εm)/(εA + εm)} + xB′ {(εB′ − εm)/(εB′ + εm)} = 0.

(20)
By analogy, we have

(1 − xB′){(σA − σm)/(σA + σm)}
+ xB′ {(σB′ − σm)/(σB′ + σm)} = 0. (21)

By putting the experimental values in (21), we can obtain xB′

and ŝ.

4. Numerical application

In the previous sections, we have discussed the premelting
features of ionic crystals on the basis of the re-examined
Frenkel’s theory. In order to compare this to the theoretical
results, we have performed MD simulation in (K0.5Na0.5)Cl,
Ag(Br0.6Cl0.4) and (Ag0.7Cu0.3)Br systems. The simulation
procedure is essentially the same as previous works [10–14].
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The Tosi–Fumi type pair potentials are used in MD for
(K0.5Na0.5)Cl, as [20],

Vi j(r) = Bi j exp(−ai jr) + zi z j e2/r − Ci j/r 6 (22)

where the first term represents the short range repulsion
between ions; the second term stands for the Coulomb
interactions with the charge of ions, zi and z j ; and the third
term represents the van der Waals interactions.

For Ag(Br0.6Cl0.4) and (Ag0.7Cu0.3)Br, Rahman,
Vashishta and Parrinello (RVP) [21] type potentials are used,
which are written as

Vi j(r) = Hi j/rni j + zi z j e2/r − Pi j/r 4 − Ci j/r 6 (23)

where the first term stands for the repulsion between ions; the
second term is the Coulomb interaction; the third term are the
charge–dipole interactions; and the fourth term is the van der
Waals contribution. The adopted parameter values are taken
from the literature [22, 23]. The MD calculations are carried
out for (K0.5Na0.5)Cl, Ag(Br0.6Cl0.4) and (Ag0.7Cu0.3)Br using
8000 atoms (4000 cations and 4000 anions) placed in a cubic
cell. The number of ions in the MD cell is decided so that
it will include the whole ‘L’ cluster estimated by the theory.
The periodic boundary condition for the MD cell, and the
Ewald method for the calculation of Coulomb interaction are
used. The cell is equilibrated at constant temperature, and
subsequently the MD calculation is carried out on the condition
that the number of particles, the volume of the cell, and the total
energy of the system (NV E) are constant.

The Lindemann instability criterion was introduced in
order to detect distorted particles in a recent MD study
on the Lennard-Jones (LJ) crystal [17, 24]. In this study,
we have also evaluated the Lindemann ratio δL, which is
calculated from the root-mean-square displacement of the
particle i at a position ri (t) from its original lattice site Ri (0),
i.e. 〈�r2〉1/2 = 〈(ri (t) − Ri (0))2〉1/2, divided by the average
nearest neighbor distance 〈rkl 〉. The values of δL are calculated
at the temperatures corresponding to the molten phase at 100 K
above the melting point, at the melting point, and to the solid
phase at 100 K below the melting point. The calculation of
δL is performed during 1000 MD steps. One MD time step is
2.0 × 10−15 s.

We adopt the critical Lindemann ratio, δc > 0.24, in order
to distinguish ‘Lindemann particles’, which we have referred
to as ‘quasi-liquid’ or ‘L’ particles in previous sections, from
‘solid-like’ particles or ‘S’ particles. The estimated numbers
of ‘L’ particles at melting point of (K0.5Na0.5)Cl crystals are
204 K, 732 Na and 1199 Cl; Ag(Br0.6Cl0.4), 2295 Ag, 388 Br
and 254 Cl; (Ag0.7Cu0.3)Br, 1320 Ag, 1200 Cu and 341 Br,
respectively. The average of δL calculated during 1000 MD
steps are listed in table 1 for ‘L’ and ‘S’ ions in (K0.5Na0.5)Cl,
Ag(Br0.6Cl0.4) and (Ag0.7Cu0.3)Br at 930 K, 686 K and 613 K,
respectively. The estimated margin of error is ±0.004.

The obtained average δL for ‘L’ ions of K, Na, Cl and Br
is about 0.26–0.27, whereas, the average δL for ‘L’ ions of Ag
and Cu are 0.32 and 0.58, respectively. This fact indicates the
mobile feature of noble metal ‘L’ ions, in particular Cu ions
move widely, so all Cu ions are classified as ‘L’ ions.

Table 1. Average of δL for ‘L’ and ‘non L’ ions.

(K0.5Na0.5)Cl
at 930 K δL

Ag(Br0.6Cl0.4)
at 686 K δL

(Ag0.7Cu0.3)Br
at 613 K δL

‘L’ K ions 0.26 ‘L’ Ag ions 0.31 ‘L’ Ag ions 0.33
‘L’ Na ions 0.27 ‘L’ Br ions 0.26 ‘L’ Cu ions 0.58
‘L’ Cl ions 0.27 ‘L’ Cl ions 0.26 ‘L’ Br ions 0.26
‘S’ ions 0.21 ‘S’ ions 0.19 ‘S’ ions 0.19

Some of the typical examples of trajectories of ions will be
helpful for understanding the configuration difference of ions,
which are drawn to 1000 MD time steps. The trajectories of
‘L’ type cations, K and Na, and anions, Cl, in (K0.5Na0.5)Cl,
projected on the x–y plane, are shown in figures 1(a), and (b),
respectively. Cluster-like structures are clearly seen in these
figures. For Ag(Br0.6Cl0.4), as is seen in figure 2(b), the anions,
Br and Cl, form a cluster-like distribution, which resembles
those of the ‘L’ ions in (K0.5Na0.5)Cl. As seen in figure 2(a),
the trajectories of Ag ions in Ag(Br0.6Cl0.4) show a more
extensive distribution, and cluster-like distributions are also
observed. As mentioned in section 1, the transition to the
superionic phase in the Ag–halide mixture Ag(Br0.6Cl0.4) at
high temperature also seems to be prevented by melting, which
is experimentally observed in AgBr [8, 9]. On the other hand,
as seen in figures 1(c) and 2(c), ‘S’ ions in both (K0.5Na0.5)Cl
and Ag(Br0.6Cl0.4) move around their crystal lattice points,
corresponding to the small δL value of solid phase. These
facts show the propriety of the calculation separating ions
by δL. In the (Ag0.7Cu0.3)Br system, as seen in figures 3(a)
and (c), the trajectories of Ag and Br ‘L’ ions resemble those
of Ag and anions in Ag(Br0.6Cl0.4). As seen in figure 3(b),
however, the trajectory of Cu ions is more diffusive than Ag
and Br in (Ag0.7Cu0.3)Br. According to the experiment, Cu
ions have a tendency to go into the interstitial position from
their initial rock salt lattice site [25]. The simulation results
of the trajectory of Cu ions show the liquid-like features of Cu
ions, which corresponds to the experimental results.

Next, as case studies for pseudo-binary ionic crystals, we
will estimate some quantitative magnitudes of the ‘L’ clusters
of Ag(Br0.6Cl0.4), (K0.5Na0.5)Cl and (Ag0.7Cu0.3)Br by the
theory considered in the previous sections and the results of
MD.

(a) Case study for (K0.5Na0.5)Cl
We will deal with the conductivity of (K0.5Na0.5)Cl,
because there is no available experimental data on
the temperature dependence of the specific heat of
(K0.5Na0.5)Cl, as far as we know, which requires the
use of (11) to obtain ŝ. According to the experimental
conductivity data in the solid phase, we obtain the
conductivity at melting point by extrapolation as σm =
3.24 × 10−4 �−1 cm−1 [26]. We use the data in
the molten phase at the melting temperature, σB′ =
2.18 �−1 cm−1 for that of B′-state [27]. It is known that
both cations and anions affect the electric conductivity of
ionic crystals in the high temperature region. In this case,
the intrinsic electric conductivity of alkali–halide crystals

4
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(a) (b)

(c)

Figure 1. Trajectories of (a) K and Na ‘L’, (b) Cl ‘L’ and (c) K, Na and Cl ‘S’ ions in (K0.5Na0.5)Cl at 930 K.

is expressed as

σAT = σcT + σa T = C0 exp(−Wc/kBT )

+ A0 exp(−Wc/kBT ). (24)

Fuller and Reilly [28] evaluated the parameters in (24) for
alkali chlorides. We use the average values of NaCl and
KCl for σA. Putting the data into the first model (16) with
βα ∼ 1/7, we obtain ŝ ∼ 1100. On the other hand,
by the second model (21), we obtain ŝ ∼ 800. These
theoretical ŝ numbers seem to be comparable to the MD
result ŝ = 1067.

(b) Case study for Ag(Br0.6Cl0.4)

The conductivities of the solid and liquid phase at the
melting temperature, estimated from experiments, are
σm = 0.429 �−1 cm−1 and σB′ = 3.04 �−1 cm−1,
respectively [29, 30]. Using the calculated data for
σA [31], we obtain ŝ ∼ 1500 by (16) and (21).
Unfortunately, as far as we know, there is no available
data on the latent heat and the temperature dependence
of specific heat for Ag(Br0.6Cl0.4), so we postulate that
the latent heat and the deviation of specific heat from
linearity at the melting temperature are expressed as a

linear combination of those of AgBr and AgCl at their
melting point [16]. The estimated values are �Cp =
5.0 cal mol−1 K−1, and Lm = 2.58 × 103 cal mol−1.
Putting these values into (11) using βα ∼ 1/7, we also
obtain ŝ ∼ 1650, which is comparable to the average value
of 1470 obtained by MD. The MD result is reproduced by
βα ∼ 1/6.6.

(c) Case study for (Ag0.7Cu0.3)Br
The specific heat of solid (Ag0.7Cu0.3)Br to the melting
point has been obtained by an experimental study [32].
The excess specific heat �Cp, i.e. the deviation from
the linear extrapolation from low temperature has been
estimated [32]. The molar specific heat at constant
pressure Cp can be expressed as Cp = C0

p + �Cp,

where C0
p involves the usual harmonic and anharmonic

contributions. The estimated excess specific heat is
�Cp(Tm) = 1.79 cal mol−1 K−1. For the other data
required in (11), we have also adopted the values; Lm =
2.24 × 103 cal mol−1 estimated from the specific latent
heat of AgBr and CuBr. Putting these values into (11)
and using αβ ∼ 1/7, we obtain ŝ ∼ 1800, which is
comparable to the average number of ‘L’ particle pairs,

5
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(a) (b)

(c)

Figure 2. Trajectories of (a) Ag ‘L’, (b) Br and Cl ‘L’ and (c) Ag, Br and Cl ‘S’ ions in Ag(Br0.6Cl0.4) at 686 K.

1430, given by MD. The MD result is reproduced by
βα ∼ 1/6.2.

Saito et al [32] have estimated the occupation probability
of cations on the tetrahedral or interstitial sites for
(Ag0.7Cu0.3)Br using the model of Schottky-type excess
specific heat which is caused by jumps of the mobile ions
between two types of sites; the octahedral site and the
tetrahedral site. However, the estimated occupation probability
by this model is about 25% at the melting point, which is
rather small compared to the number of ‘L’ cations obtained
by MD. This discrepancy may be assigned to the fact that
the thermodynamic model of the two different energy sites
has neglected the cations at the intermediate positions, and
the interactions between defects. This result may suggest
that the ‘L’ clusters in the premelting region can be detected
more sensitively by the Frenkel-type defect model and the
Lindemann instability condition.

5. Transport properties

In this section, we calculate the mean square displacement
(MSD), r 2

ξ (t), and the velocity autocorrelation functions (VAF)

in order to clarify the dynamical behavior of ‘L’ ions and ‘S’
ions at the premelting temperature. We briefly summarize the
procedure [33]. MSD is defined as

r 2
ξ (t) = 1

Nξ

Nξ∑
i=1

〈|ri (t) − ri (0)|2〉ξ (25)

where i and Nξ represent the i th ion of the ξ -type ion and
its number, respectively. The angular brackets indicate an
average over all atomic positions ri (t) and the time average, or
ensemble average. The diffusion coefficient is related to MSD
as

Dξ = lim
t→∞

r 2
ξ (t)

6t
. (26)

If t is small enough, then

r 2
ξ (t) ∼= 〈vi (0) ·vi (0)〉ξ t2 = 3kBt

mξ

t2. (27)

The VAF for the ξ -type ion is defined using the velocity of the
i th ion at time t , vi (t) as

fξ (t) = 1

Nξ

∑
i(ξ)

〈vi (t) · vi (0)〉ξ (28)
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(a) (b)

(c) (d)

Figure 3. Trajectories of (a) Ag ‘L’, (b) Cu ‘L’, (c) Br ‘L’ and (d) Ag and Br ‘S’ ions in (Ag0.7Cu0.3)Br at 613 K.

the normalized VAF is defined as

�ξ(t) = fξ (t)

fξ (0)
. (29)

The frequency dependent diffusion coefficients Dξ (ω) in the
premelting region and molten phase are obtained to discuss the
phonon mode. The Fourier transformation of �ξ(t) is given by

�ξ(ω) =
∫ ∞

0
dt �ξ(t)eiωt . (30)

Dξ (ω) is obtained from �ξ(ω) as

Dξ (ω) = kBT

mξ

�ξ (ω). (31)

As Dξ (ω) is proportional to the density of states of the
normal modes in a harmonic system, it might be appropriate to
compare Dξ (ω) with experimental data of the density of states
of phonons [34, 35]. The static limit value of Dξ (ω) is related
to the self-diffusion coefficient Dξ as

Dξ = kBT

mξ

�ξ (ω = 0). (32)

In order to clarify the difference of the short time detailed
behaviors of ions, the obtained MD results of r 2

ξ (t) are shown
in figures 4(a)–(c), with the long time results of r 2

ξ (t) from
t = 0 to 4.0 × 10−12 s in the inset. As seen in these figures,
the r 2

ξ (t)s increase in proportion to t2 in the vicinity of t = 0.
The results for (K0.5Na0.5)Cl and Ag(Br0.6Cl0.4) are shown in
figures 4(a) and (b), respectively, where the r 2

ξ (t) of ions in
the molten phase increase linearly with lapsed time, as seen
in the insets, whereas the r 2

ξ (t) of ions in the solid phase and
the premelting region become flat over the course of time.
On the other hand, for (Ag0.7Cu0.3)Br, as seen in figure 4(c),
not only the ions in the molten phase but also the cations in
the premelting and solid phase are diffusive, i.e. the r 2

ξ (t)s
are not flat in the inset graph. This MD result corresponds
to the experimental fact that Cu ions in the solid phase of
(Ag0.7Cu0.3)Br are diffusive and have a tendency to go into
the interstitial site of the rock salt structure [25, 32].

As seen in figures 4(a)–(c), for a certain ion, the same
order of r 2

ξ (t)s can be seen, i.e. r 2
ξ (t) of the molten phase, ‘L’

and ‘S’, and solid phase can be seen in this order from top to
bottom. Moreover, for (K0.5Na0.5)Cl, the r 2

ξ (t)s of Na, Cl and
K appear in this order from top to bottom; for Ag(Br0.6Cl0.4),

7
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(a) (b)

(c)

Å Å

Å

Å

Å

Å

Figure 4. MSD of ‘L’ ions and ‘S’ ions in (a) (K0.5Na0.5)Cl at 930 K, (b) Ag(Br0.6Cl0.4) at 686 K and (c) (Ag0.7Cu0.3)Br at 613 K with those
of the molten phase 100 K above the melting point, and the solid phase 100 K below the melting point. The graphs on a long timescale are
shown as insets.

(a) (b)

Figure 5. The normalized VAF of (a) ‘L’ ions and ‘S’ ions (black line) in (K0.5Na0.5)Cl at 930 K and (b) the molten phase 100 K above the
melting point and the solid phase 100 K below the melting point (black line) in (K0.5Na0.5)Cl.
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(a) (b)

Figure 6. The normalized VAF of (a) ‘L’ ions and ‘S’ ions (black line) in Ag(Br0.6Cl0.4) at 686 K and (b) the molten phase 100 K above the
melting point and the solid phase 100 K below the melting point (black line) in Ag(Br0.6Cl0.4).

(a) (b)

Figure 7. The normalized VAF of (a) ‘L’ ions and ‘S’ ions (black line) in (Ag0.7Cu0.3)Br at 613 K and (b) the molten phase 100 K above the
melting point and the solid phase 100 K below the melting point (black line) in (Ag0.7Cu0.3)Br.

the order is Ag, Cl and Br; and for (Ag0.7Cu0.3)Br, the order is
Cu, Ag and Br. This MD result suggests that the order of size
of diffusion coefficients of the ions is the same even in different
phases, which is related to the inclination of r 2

ξ (t) from (26).
It is interesting to see the short time behavior in r 2

ξ (t) for
the ‘L’ ions in figures 4(a)–(c). As seen in figure 4(a) for
(K0.5Na0.5)Cl, the r 2

ξ (t)s of ‘L’ ions begin to separate from
the increasing r 2

ξ (t) lines of the molten phase at approximately
1.5 × 10−13 s; for Ag(Br0.6Cl0.4) in figure 4(b), the r 2

ξ (t)s
of the ‘L’ ions begin to separate from the lines of the molten
phase approximately from 1.2 × 10−13 to 4.0 × 10−13 s; and
for (Ag0.7Cu0.3)Br in figure 4(c), the separation begins from
1.6 × 10−13 to 3.8 × 10−13 s. The short time behavior of the
r 2
ξ (t)s seem to be related to the minimum of their VAF, which

are shown in figures 5(a)–7(b). As seen in figure 5(a), the VAF
of the ‘L’ ions of (K0.5Na0.5)Cl has minima at 1.2 × 10−13,
1.4 × 10−13 and 1.5 × 10−13 s, corresponding to their MSD;
for Ag(Br0.6Cl0.4) in figure 6(a), the minima are at 1.2×10−13,
2.0×10−13 and 4.0×10−13 s; for (Ag0.7Cu0.3)Br in figure 7(a),

the minima are at 1.6 × 10−13, 3.6 × 10−13 and 3.8 × 10−13 s.
These large negative values at the deep minima of the VAF are
interpreted as the back-scattering or ‘rattling’ motion of ions in
a cage of neighboring ions [36]. A difference of the depth of
the minimum of the VAF between the ‘L’ and ‘S’ ions can be
clearly observed, i.e. the minima of the ‘L’ ions are shallower
than those of the ‘S’ ions. This fact indicates that ‘L’ ions
are more diffusive than ‘S’ ions. As seen in figures 5(a)–7(b),
however, the difference of the VAF between ‘L’ and ‘S’ ions is
not as conspicuous as that between the molten and solid phase.

The Dξ (ω)s are obtained from VAF by (30) and (31). As
seen in figures 8(a)–10(b), the Dξ (ω)s have pronounced peaks
in the infrared, i.e. ‘terahertz’ region, which is characterized
by its extraordinary features, e.g. strong permeability into
substances [37]. As seen in figures 8(a) and (b) for
(K0.5Na0.5)Cl, the two split peaks of Dξ (ω) for Na in
the premelting region and the solid phase corresponding to
longitudinal acoustic (LA) and longitudinal optic (LO) phonon
modes are observed [38]. As seen in figures 9(a)–10(b), similar

9



J. Phys.: Condens. Matter 22 (2010) 155104 S Matsunaga

(a) (b)

ω

ω ω

ξ

ω
ξ

Figure 8. (a) Dξ (ω) of ‘L’ ions and ‘S’ ions (black line) in (K0.5Na0.5)Cl at 930 K. (b) Dξ (ω) of the molten phase 100 K above the melting
point and the solid phase 100 K below the melting point (black line) in (K0.5Na0.5)Cl.

(a) (b)

ω ω

ω
ξ

ω
ξ

Figure 9. (a) Dξ (ω) of ‘L’ ions and ‘S’ ions (black line) in Ag(Br0.6Cl0.4) at 686 K. (b) Dξ (ω) of the molten phase 100 K above the melting
point and the solid phase 100 K below the melting point (black line) in Ag(Br0.6Cl0.4).

two splits can be seen in the Dξ (ω)s of Cl in Ag(Br0.6Cl0.4),
and Br in (Ag0.7Cu0.3)Br for the premelting and solid phases,
respectively.

As seen in these figures, the Dξ (ω) peaks of the ‘L’
ions are broadened and observed at lower frequencies than
those of the ‘S’ ions, which can be interpreted as a more
diffusive feature, or softness, of the ‘L’ ion cluster, though
these tendencies in the Dξ (ω) peaks are more obvious in the
difference between the molten and solid phases. It seems
interesting to find the exception that the second peak of Dξ (ω),
i.e. the LO mode of the Cl ‘L’ ion in Ag(Br0.6Cl0.4) in
figure 9(a), and that of the Br ‘L’ ion in (Ag0.7Cu0.3)Br in
figure 10(a) appears at a slightly higher frequency than that
of the ‘S’ ion, which contradicts the expected softness of the
‘L’ ions. This result might be attributed to the influence of
vibrations of cations and/or the ‘cage’ effect from surrounding
ions, however, the detailed explanation remains for future
analysis.

6. Conclusion

The theory of the premelting phenomena in ionic crystals on
the basis of the concept of the heterophase fluctuation, which is
connected with specific heat and conductivity, has been applied
to the pseudo-binary ionic crystals in the KCl–NaCl, AgBr–
AgCl and AgBr–CuBr systems.

MD has been performed to examine the ionic configura-
tions in their premelting region in the vicinity of their melting
points. Liquid-like clusters have been observed in the results of
MD utilizing the Lindemann instability condition. The size of
the liquid-like clusters has been estimated by theory and MD,
and they are in good agreement with each other.

The characteristic dynamic and transport properties of
liquid-like clusters in the premelting region have also been
discussed by MSD and VAF. The results show obvious
differences between the ‘L’ and ‘S’ ions in their structural
and transport properties. ‘L’ ions show intermediate features
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(a) (b)

ω ω

ω
ξ

ω
ξ

Figure 10. (a) Dξ (ω) of ‘L’ ions and ‘S’ ions in (Ag0.7Cu0.3)Br at 613 K. (b) Dξ (ω) of the molten phase 100 K above the melting point (blue
line) and the solid phase 100 K below the melting point (black line) in (Ag0.7Cu0.3)Br.

between the solid and molten state. It is interesting that the
characteristic features of ‘L’ and ‘S’ ions are observed more in
the short time behavior in MSD and VAF.
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